
ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 8, August 2013

Copyright to IJARCCE www.ijarcce.com 3009

A Grid Based Robot Navigation by Using Priority

Algorithm

Lalit Gehlod
1
, Vaibhav Jain

2
, Mala Dutta

3
, Devesh Kumar Lal

4

Asst.Professor, Computer Engg. Department, IET, DAVV, Indore, India
 1

Asst.Professor, Computer Engg. Department, IET, DAVV, Indore, India
 2

Asst.Professor, Computer Engg. Department, IET, DAVV, Indore, India
3

Student, Computer Engg. Department, IET, DAVV, Indore, India
4

Abstract: The searching of a block over grid is easier when the rows and columns i.e. m* n of a grid is fixed. But when the grid is

dynamic or changes over time than in such situation we require a generalized algorithm for traversing over a grid. In these paper we

develop an approach for searching an object and also able to avoid an obstacle which was placed in a junction (meeting point of row and

column). Here, we use different algorithms like Dijkistra’s, Best first search and A star algorithms. We develop an approach to find the

block with minimum shortest path with the help of priority based algorithm.

Keywords: Grid solver robot, shortest path algorithm, Line follower robot, path planning, Grid based navigation, obstacle avoidance.

I. INTRODUCTION

The grid based robot navigation system is one of the most

dynamic areas of material handling today. Transportation of

raw materials and finished products is typical in an industry.

Controlled transportation and product identification, as well

as safe movement throughout the process, are the key to

such type of installations [5]. The major problem that the

robot faces while traversing over the grid is of path planning

and identification of its co-ordinate we will discuss it in later

section[1][2]. Firstly we will discuss the basic term related

with these algorithm.

A grid is represent as the [m * n] matrix where m is the

number of rows and n is the number of columns. The rows

and columns may be black line which is drawn over a white

surface or white line which is drawn on black surface. The

robot which follows a single line is known as line follower

robot the line is either black or white. Here we use IR

sensors for sensing the line [8][16]. IR sensors are able to

distinguish between white and black lines. IR sensors consist

of a IR emitter and IR receiver pair. The high precision IR

receiver always detects a IR signal. The white and black

colors has different wavelength which can be compares by

IR sensor [17]. To follow a Black line we require minimum

two sensors. The sensors are placed one after another. To

follow a line we requires two different condition i.e. when

the left most sensors are in black line we have to take slow

right turn and when the right sensors are in black line we

have to take slow left turn[9]. This is the minimum

condition to make the robot on line.

Similarly to traverse over the grid it follows the same

condition but when the junction has been detected (when all

the sensors are attain into the line it is detected as a junction)

at such circumstances we have to take the decision whether

to take left or right turn[5][6]. To navigate over a grid we

have to follow Cartesian coordinate system for finding the

current location on the grid. The robot set its initial location

as (0,0) and maps all the quadrant according to it. The left

node as (-1,0) the right node as (1,0)and the node below the

origin is taken as(0,-1) and above the origin as (0,1)

respectively. The robot has also to maintain its direction

while moving forward, left or right it has to update the

direction according to the turn. Updating of direction

according to the TURN and its priority are explained in

detail in later section [7][16]. The arduous problem in the

field of robot navigation is when it consist an obstacle and

we have to avoid such obstacle and search for the object. We

have to search the object with the minimum searching

algorithm. The obstacle and object is placed on the junction.

The obstacle is a cubical block with half portion is colored

with white and another half with black and we consider the

purely black or white as an object [3][4].

To deal with Grid Based Robot Navigation problem we have

to juxtapose with dump bot and real life problem by dealing

with the searching an object which is kept at certain location

in a house [6]. The primary step is to search for object in the

same room and then the consecutive room. Similarly the

algorithm by priority is follows such behavior.

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 8, August 2013

Copyright to IJARCCE www.ijarcce.com 3010

II. ENVIRONMENTS USED FOR ROBOT

NAVIGATION

A. Type of Grid

We can use the grid of any dimension of [m * n] as shown in

fig 1.The grid may also consist of combination of multiple

grid. For such situation we have to place two extra sensors in

below the center of both the wheel. These sensors are

capable of to keep the robot into the grid with a condition

i.e. when all the sensors in (white or black) we have to take

(right or left) turn until the line is detected [5].

B. Grid Mapping

The grid is map according to Cartesian coordinate system.

Robot sets the initial node as an origin and maps the entire grid

according to origin and its direction which shows in fig 1.

 C. Figures

1. Coordinate System of Grid

Fig 1 Grid [3*4](shows about a black line which is drawn in

a white surface or vice-versa).The junction is labelled as

according to its coordinate system.

2. Obstacle

Fig 2 Obstacle (Two IR sensors are placed in front of the

robot which is which is used to detect the two different

colours are treated as an obstacle).

3. Object

Fig 3 Object (The pure white and black block are consider as

an object i.e. if both the sensors give the same value it is an

object).

III. ALGORITHM USED

A. Dijkistra’s Algorithm

As according to dijkistra algorithm we have to traverse the

node closer to the origin which is set by the robot [11].

B. Best-First Search

According to best first search we have to traverse the node

which is closer to the object. With the help of heuristic

function [14].

C. A Star Algorithm

It is the combination of both dijkistra’ and best-first search.

Here we have to traverse a node which is closer to origin as

well as closer to object [15].

(0,3)

(1,3)

(2,3)

(0,2)

(1,2)

(2,2)

(0,1)

(1,1)

(2,1)

(0,0)

(1,0)

(2,0)

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 8, August 2013

Copyright to IJARCCE www.ijarcce.com 3011

IV. ALGORITHM WITHOUT OBSTACLE

A. Calculating Minimum Hops

For calculating minimum hops of a grid by formula is

M.H. =|x1 - x2| + | y1 – y2|

B. Calculating Direction

Table 1.

Direction Turn Set
Direction

Set Co-
ord.

North Forward North Y++

North Right East X++

North Left West X- -

East Forward East X++

East Right South Y- -

East Left North Y++

West Forward West X- -

West Right North Y++

West Left South Y- -

South Forward South Y- -

South Right West X- -

South Left East X++

C. Sensor Placing

Fig 4 IR Sensor Placing (LL-Left Most sensor, L- Left sensor,

C-Center sensors, R-Right sensors, RR-Right Most sensor)

C. Attributes used in Algorithm

I) Traverse stack

The value of (x, y) is added into traverse stack when the

robot is encounter a junction on a grid. It also placed the

value into the stack when an obstacle is detected.

II) Obstacle stack

When robot detect an obstacle on a grid the value(x, y) on

that instance are place into the stack.

III) Priority

It maintains the priority of all the connected nodes. It

contains the field (x, y, ptr) ptr represent the priority which is

incremented by one every time the robot navigate (ptr: =

ptr+1).These stack is responsible for taking the decision for

the next node movement of robot .The robot check the max

priority value in the stack on every junction to move in that

direction corresponding value of (x, y) to ptr. After

traversing the node the priority is reset to 0. If value of the

priority of more than two coordinate are same than the next

node is taken according to the direction. We will see at

section IV (direction).

IV) Direction

When there is ambiguity in priority stack the next node is

determine in order to N>E>S>W. The direction is given a

weight N, E, S and W as 1,2,3,4 respectively. Required

Numbers of direction possibilities are shown in section IV

(B) table1.According to the use of such tables the direction

is updated on every junction. Direction is also used in path

planning concept which is discussed at section IV (E).

V) Next node

In every junction we have to find the next node which is

done with the help of priority and direction as discuss in

earlier section.

VI) Count

The variable ctx is works as an counter it keep the record

that the number of junction the robot traverse over a grid it

increment the value of ctx by one (ctx: =ctx+1).

VII) Current node

These variables are responsible for locating the current

location in the grid. On every motion or turn the direction

and current location is updated.

VIII) Detect junction

When all the sensors give a high value a junction is

encounters.

E. Path Planning

In robot navigation over a grid the robot in any instances has

to map its current coordinate in any junction. The robot start

with direction north and co-ordinate(0,0) update the values

of (x,y) according to turn as shown in section IV(B) table

1.These section is able to update its co-ordinate and

direction. For an example if robot is an location (2,3) south

direction and bot has to move the co-ordinate (0,1)We have

to calculate the minimum hop is required to traverse between

these two location by the M.H.(minimum hop) formula in

section IV(A) is M.H.= |2-0|+|3-1|= 4.So we get 4 min step

to move in location(0,1).we have equate (2,3)-(0,1)and

comparing with the direction the next node is generated as

(2,2)while view in the table of south direction it gives by

reducing the y- - by moving forward[13]. again by

comparing (2,2)-(0,1) next node is (2,1) by getting with

forward movement as y - -.after detecting the junction at

(2,1)and comparing with (0,1) the next node has been

detected as(1,1) means x++ which has been given by taking

right turn and direction changes to west .and again the last

comparison between (1,1)-(0,1) we see in table of west

direction and by moving forward as X- - its gives the co-

ordinate (0,1) which is the shortest route from (3,2)[12].

But in the case of obstacle the process is similar but if

obstacle is detected we have to make entry in traverse stack

LL L C R RR

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 8, August 2013

Copyright to IJARCCE www.ijarcce.com 3012

and obstacle stack. The bot has to backtrack and again find

the next node. After encounter a junction next node has to be

compare whether the co-ordinate has been traverse earlier or

not and it may contains an obstacle. Such co-ordinate has

been given the priority 0 in the priority stack [11].

F. Flow Chart without obstacle

Fig 5 Flow Chart without Obstacle.

G. Algorithm (Without Obstacle)

1 start

2 Ctx:=0;

3 Int x:=0,y:=0;

4 Object detection:

5 If s1===high && s2==high || s1==low&& s2==low

6 Return 0

7 Else

8 Return 1

9 End if

10 Detect junction:

11 If ll=high&& l==high&& c==high&& r==high&&

rr==high

12 Ctx:=Ctx+1;

13 End if

14 Traverse stack(int x , int y)

15 /*Stores the value of traversed coordinate*/

16 Set priority(int x , int y)

17 /* set value 1 to all the connected node */

18 Direction()

19 /* it is implemented as table 1*/

20 detect junction

21 Set x:=0 ,y:=0

22 While(object detection!=0)

23 Traverse stack(x,y)

24 Set priority(x,y, value)

25 Detect next node

26 Check max priority in priority stack

27 If priority is max

28 Take turn

29 Change direction

30 Else

31 Check in Direction turn.

32 End if

33 End while

V. ALGORITHM WITH OBSTACLES AND

OBJECTS

A. Arrangement over a Grid

The grid consists of any m*n matrix where an two obstacles

and object is placed over a junction of(x1, y1), (x2, y2), (x3,

y3) respectively. After locating the initial position the bot

traverse the node which is closer to origin. We can also

design an alternate motion of a bot like it has to move in

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 8, August 2013

Copyright to IJARCCE www.ijarcce.com 3013

clock wise direction as -f-r-r-f-f-r-f-r-f- after completing

such turns bot will move a one complete cycle. The cycle is

enhancing by introducing one forward turn in every left or

right turn. The approaches is failed in the situation when the

grid is not continues or an obstacle is present in the route.

B. Flow Charts with Obstacle

Fig 6 Flow chart With Obstacle.

C. Detailed Algorithm (With Obstacles and Object)

1 start

2 Ctx: =0;

3 Int x: =0, y: =0; /*Global Variable */

4 Char Dec;

5 Object detection:

6 If s1==high && s2==high || s1==low&& s2==low

7 Dec=true;

8 Return True

9 Else if s1==high && s2==low||s1==low&&s2==high

10 Dec=false

11 Return false

12 Else

13 dec=not;

14 //do nothing

15 End if

16 Detect junction:

17 If ll==high&& l==high&& c==high&& r==high&&

rr==high

18 Ctx:=Ctx+1;

19 End if

20 Traverse stack(int x,int y)

21 /*Stores the value of traversed coordinate*/

22 Set priority(int x,int y)

23 /* Stores the values of connected nodes and its priority*/

24 Write stack(int x ,int y)

25 Detect object()

26 //s1 & s2 are the two front sensors

27 If s1==high&& s2==high || s1==low&&s2==low

28 Return object

29 Else

30 Return obstacles

31 End-if

32 Forward()

33 /*condition for forward */

34 Left turn()

35 /*condition for Left turn */

36 Right turn()

37 /*condition for Right turn */

38 Path planning(int x1 ,int y1)

39 /* Select destination node by priority stack*/

40 Int x2,y2;

41 //cal M.H.

42 Take turn according to direction

43 detect junction

44 Set x:=0 ,y:=0

45 While(Object detection !=true)

46 If Dec==false

47 Go to obstacle;

48 Begin:

49 Traverse stack(x,y)

50 Set priority(x,y ,value)

51 /* set value 1 to all the connected node */

52 Detect next node

53 Compare with traverse stack

54 If node present

55 Set priority 0

56 Else

57 //compares with priority stack

58 Priority stack()

59 End if

60 Check max priority in priority stack

61 If priority is max

62 Set x:= ,Y:= //values of x and y are of max priority

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 8, August 2013

Copyright to IJARCCE www.ijarcce.com 3014

63 Path planning(x,y)

64 Else

65 Check in Direction turn.

66 End While

67 If dec=true

68 /* Calculate shortest distance by M.H. and path

planning*/

69 Obstacle:

70 Traverse stack(x,y)

71 Backtrack ()/*move back until junction is detected */

72 Detect next node();

73 Go to Begin;

VI. RESULT

This algorithm is implemented on 4×4 matrix where bot

encounters 16 junctions. The architecture of robot is

consisted two stepper motor, arduino ATmega 8

microcontroller, one LCD, one motor driver IC and six IR

sensors. Five sensors are placed on bottom of the bot for

detecting the line. The most corner sensors keep the record

of the junction while three sensors in the middle keep the bot

in line. We use one sensor in front for detecting an object.

Fig 7 Robot used for testing this algorithm.

We kept an object on junction (2,2) and placed the bot on

initial node i.e.(0,0). The bot navigates according to priority

based algorithm is 00->01->11->10->20->21->22.

VII. CONCLUSION

These paper will be useful in the field of robot navigation

system .We have discuss the algorithm for searching a

desired block with shortest route. We introduce the concept

of priority of the node while traversing. We also applied the

obstacle avoidance technique with the help of stacks. We

develop two different algorithms where overall robot

navigation is simple and errorless. This paper represents path

planning and navigation over a grid with a single bot. In

future work, we can introduce multiple bot over a grid which

will suppose to communicate with each other about its self-

position and the obstacle that has been placed over a grid.

Therefore, it is easier for the other bot to know about

obstacles and object location on the grid so that it will

become easier to make the shortest route by using this value.

REFERENCES

[1] Sebastian Thrun and Arno Bucken, “Learning Maps For Indoor Mobile Robot

Navigation”, April 1996, CMU-CS-96-121, School of Computer Science,

Carnegie Mellon University Pittsburgh, A 15213.

[2] Sreekanth Reddy Kallem , Department of computer science, AMR

Institute of Technology, Adilabad,JNTU, Hyderabad, A.P, India “Artificial

Intelligence Algorithms” IOSR Journal Of Computer Engineering
(IOSRJCE) ISSN: 2278-0661, ISBN: 2278-8727 Volume 6, Issue 3 (Sep-Oct. 2012).
[3] Joachim Hertzberg and Frank Kirchner. Landmark-based autonomous

navigation in sewerage pipes. In Proceedings of the First Euromicro

Workshop on Advanced Mobile Robots (EUROMICRO '96), pages 68{73.
IEEE Computer Society Press, 1996.

[4] Hans P. Moravec. Sensor fusion in certainty grids for mobile robots.

AI Magazine, pages 61{74, Summer 1988).
[5] Michael J.Milford Janet Wiles Gordon F.Wyeth, “Solving

Navigational Uncertainty Using Grid Cells On Robots,” November 2010,

school of engineering systems, Queensland University of Technology,
Brisbane, Australia, journal.pcbi.1000995.

[6] Carsten Buschmann Florian Muller and Stefan Fischer, “Grid-Based

Navigation for Autonomous, Mobile Robots ”,Institute of Operating
Systems And Networks, Technical University of Braunschweig

Braunschweig, Germany.

[7] Sebastian Thrun,“Robotic Mapping: A Survey”,Feb 2002,CMU-CS-

02-111,School of Computer Science, Carnegie Mellon University

Pittsburgh.

[8] 8-bit AVR Microcontroller with 16k bytes in System Programmable
Flash Brief Details By ATMEL http://www.atmel.com/images/doc2466.pdf.

[9] Robert J.Szczerba Danny Z.Chen John J. Uhran,“A Grid-Based

Approach For Finding Conditional Shortest Paths In An Unknown
Environment ”, Nov 1994,Department of computer Science and

Engineering University of Notre Dame ,Notre Dame, Indiana 46556,U.S.A.

[10] Websites on algorithm by amit“
http://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html”.

[11] Book on Algorithm by Thomas H. Cormen Charles E.Leiserson

Ronald L. Rivest and Clifford Stein, “introduction to algorithm” Second edition.
[12] Reference book on Data Structure by Mark Allen Weiss, “Data

Structure and Algorithm Analysis in C++”third edition.

[13] Algorithm Concept by Narasimha Karumanchi“Data Structures and
Algorithms Made Easy” second edition.

[14] Websites on best first search is

http://www.artint.info/slides/ch03/lect3.pdf.

[15] Websites on A Star algorithm is

http://www.informatics.sussex.ac.uk/courses/FP/AstarAlgorithm/AstarAlgo
rithm4.pdf.

[16] Ahmedullah Aziz, Md. Shafayat Hossain and Mohammad Wahidur

Rahman “Programming and construction of Ahmedullah-A Fast Grid solver

robot” International Journal of Information Technology, Control and

Automation (IJITCA) Vol.3, No.1.

[17] IR Sensors reference from Robosoft System “IR Sensor Based

Obstacle Detection Sensor Module”.

[18] Richard T.Vannoy, “Design a Line Maze Solving

Robot”,April2009http://www.pololu.com/file/0J195/line-maze-

algorithm.pdf.

http://www.atmel.com/images/doc2466.pdf
http://www.informatics.sussex.ac.uk/courses/FP/AstarAlgorithm/AstarAlgorithm4.pdf
http://www.informatics.sussex.ac.uk/courses/FP/AstarAlgorithm/AstarAlgorithm4.pdf

	PointTmp

